Journal of Computational Physit§6,352-359 (1999)

®
Article ID jcph.1999.6364, available online at http://www.idealibrary.conl DE &l.

Numerical Solution of a Generalized Elliptic
Partial Differential Eigenvalue Problem

S. R. Ottd* and James P. Denier

*School of Mathematics and Statistics, The University of Birmingham, Edgbaston, Birmingham B15 2TT, Un
Kingdom; {Department of Applied Mathematics, The University of Adelaide, Adelaide 5005, Australia
E-mail: S.R.Otto@bham.ac.uk, jdenier@maths.adelaide.edu.au

Received February 18, 1999; revised August 24, 1999

In this article we discuss a method for the solution of non-separable eigenvalue
problems. These problems are taken to be elliptic and linear and arise in a whole
host of physically interesting problems. The approach exploits finite differences and
a pseudo-spectral scheme. We elect to normalise at a single point, which is usually
internal to the domain, and exploit the fact that the partial differential equation has not
been satisfied at this point to determine whether we have an eigenvalue of the system.
The eigenvalue solver is of a local nature and is consequently relatively inexpensive
to run. © 1999 Academic Press
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1. INTRODUCTION

In order to understand the dynamics of many physical situations, whether they be ma
or microscopical in nature, one is compelled to solve an elliptic eigenvalue problem.
the use of physical arguments, for instance symmetry, it is often possible to reduce tt
problems to ones governed by ordinary differential equations. However, there are m
cases where this is infeasible and any formadfhocapproximation can lead to results
that are totally unreliable. Such elliptic eigenvalue problems occur in many different fiel
from meteorology [3] and quantum physics [1] to fluid stability [2] and the behaviour ¢
magnetic dynamos [4].

We shall not dwell upon any physical setting which results in such elliptic eigenval
problems but will merely give a brief description of one which arises in the study of
stability of fluid flows. In the work of Hall and Horseman [2] the authors discuss th
susceptability of nonlinear counter-rotating vortices within a boundary layer to second
instabilities; the existence of such secondary instabilities has been identified as an im
tant factor in the process of transition to turbulence. In a similar vein, the work of Ott
Sarkies, and Denier [8] considers the influence of a spanwise perturbation on the stak
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characteristics of Kelvin—Helmholtz waves within compressible mixing layers. Both ar
cles solve an equation which governs the structure of perturbations to a given basic
u(y, z) in the form of travelling waves proportional to ekp (x — ct)). The complex phase
speed is determined as a function of a real streamwise wavenurabby; solving

%P 3°P 2 JuaP 2 Q9uaP 9

to = — == T _¢?P =0, (1)

LIP)= — — —
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subject to suitable boundary conditions (determined by the physics of the particular flov
guestion). In (1) P is the perturbation pressunedenotes the basic velocity component in
the streamwise, direction withy andz the ordinates of the other two mutually orthogonal,
Cartesian axes. Similar equations arise in a meteorological context with additional te
present to account for buoyancy forcing (a generalisation of the Taylor—-Goldstein equa
applicable to baroclinic instabilities), and in quantum problems with a potential varyi
in more than one spatial coordinate (Swdinger's wave equation). Thus, although our
motivation arises from fluid dynamics, there are many other physical problems in wh
these methods can be used.

In this article we shall detail the numerical scheme used to solve (1) and where poss
we shall explain how this approach would be modified to solve problems from differe
physical settings, in varying geometries. Solutions are given for two model problems fr
fluid dynamics.

2. FORMULATION

We shall consider the elliptic linear eigenvalue problem (1), for two different fluid stabili
problems: a periodic array of jets in the neighbourhood of a solid boundary, locatedt
and a periodic perturbation to an otherwise uniform shear flow. The flows are both tal
to be periodic in the spanwise coordinate and as such we shall impose the condition
P(y, 20 = P(y, z+ 2), so that the perturbation has the same periodicity as the underlyi
basic flow. In the bounded problem we impose the conditiontRgady = 0 aty = O (which
is a simple consequence of the impermeability of the plate). In the unbounded problem (
far from the plate in the former problem) we impose the condition that the disturbar
pressure decays to zero.

The precise form of the decay conditions is determined by an asymptotic consideratio
(1). Thisis a relatively straightforward exercise for the two model flows considered here,
can become less trivial in other problems. For instance those problems formulated wi
cylindrical polar coordinates may require the use of Bessel functions, and conseque
a knowledge of their asymptotic forms for large arguments. In the present context,
requirement thatP| — 0 at the upper extreme of the region in the bounded problem
imposed at some outer bouga= y,, via the Robin condition

— P=0.
By +a
Inthe case of an unbounded domain the decay conditPhs> 0 as|y| — oo are replaced
by
oP

Wj:ozP:O aty = Yico-
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In order to discretise (1) we elect to use a pseudo-spectral schemezicdbelinate and
a five point central finite difference scheme in theoordinate; the computational grid has
Ny x N points. The discretized equation (1) can be written as

AP 2+ B P+ CiP+DjP1+E P 2=R, )

for j=2,..., Ny — 1. Each vector P, is of length N, and represents thevariation at
y =Yj. The matrices in (2) are of a si2¢, x N, and are given by

Aj = apjL+agj diag(fja, ..., fin,),
Bj = by L+ by diag(fjs, ..., fjn,),
Cj = (o — )L+ cyj diag(fir, ..., fin,) + A%+ diag(gj1, - - -, Gin,) A,
Dj = dyjL+dy diag(fis, ..., fjn,),
Ej = &jL+eydiag(fj1, ..., fjn,),

together withR; =Q (where L is the N, x N identity matrix). In these expressions
(@ j. b j, ¢, dj, &, ;) are simply the stencil weights associated withitthey-derivative

at y;, which can be obtained by using a Taylor series expansion about the grid poin
question. The coefficienty; andg;; are the values of the functions multiplyiag? /oy and
dP/dzin (1) evaluated at the point=y; andz=z;. The matrices associated with the
variation areA = £-1D £ andA? = £ D?E, where the matrixZ transforms into the
Fourier space an@ is the diagonal matrix which multiplies each Fourier component b
its mode number an¢/—1 (and hence produces the spatial derivative). These are given

1 27i (. N,

(Bjk= NGXP(—M<J -1- 2>(k— 1)>,
1 27i N

o= i—D(k—1--=

(£ D)jk Nexp( N, (J )( 5 )
. N;. N, .
D= d|ag<—2|, (2 — 1>|>.
Notice at the points near the boundariesyjrbiased stencils are used and heBseand

Ay, -1 are empty. The boundary conditions constitute the first and last equations: for
semi-infinite (wall) bounded problem we have

i=1 a1P3+biP+ciPp =0

: (3a)
] = Ny (C]_, Ny + Ol) ENy + d]_’ Ny ENy—l =+ el, Ny ENy—2 =0
while for the infinite (unbounded) case we require
j=1 a1P;+ b1 P+ (Cli—a)Pp =0
] 11 P3+ D11 Py + (€1 — )Py (3b)

j = Ny (ClvNy+a)ENy+dlvNyENy—1+e1,NyENy—2=

Notice that it is possible to cater for boundary conditions of the fog@o P /oy +1(z) P =
0, in which case the scalars in (3) are replaced by the matrices which will arise from
spectral decomposition of the functiok&) andl(z). The resulting system is now block
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penta-diagonal, which can be solved by Gaussian elimination in a manner which minimi
the storage requirements. The question now arises as to how to determine the complex |
speed. Ingeneral direct methods are prohibitively expensive in terms of CPU time theref
an iterative method is the natural choice. In order to implement such an iterative sche
it is necessary to normalise the system (2) in some suitable manner. In bounded probl
for instance those discussed in Hall and Horseman [2] and Otto [5], a renormalisat
was used, in which the boundary conditioryat 0 was replaced witd P /9y|y—o = f (2).
Iteration on the eigenvaluewas used until the integral 2 aty = 0 becomes large; when
this integral becomes suitably large the boundary condiéivioy|y—o =0 is satisfied
following a renormalisation. In unbounded problems it is possible to use an alternat
Schwarz technique.

Here, and in the work of Ottet al.[8], we normalise at a single internal point rather thar
at a boundary. We choose a poigt 2)normaiise (NOtice that this point can be at a boundary,
provided the boundary conditions are not of a Dirichlet form) and replace the discreti
equation at the normalising point by

P ’ (Y, Dnormalise -

The fact that the differential equation has not been satisfied at this point is used to ite
on the eigenvalue until

’|£(P)|(Y~Z)normalise“ < tOIeranCe

where|| e || is some suitable norm. We note tha¢P)|(y,2),.maie IS @ fUnction ofc, and as
such can be used to determine eigenvalues of the system. If the normalising point is
boundary then the fact that the boundary condition has not been satisfied can be use
the iteration process. A conventional secant method is adequate for the iterative proce
This technique has the advantage over that employed by Hall and Horseman [2] in tha
boundary conditions are satisfied explicitly and there is no reliance on choosing a funci
f (2) (as there would be in an alternating Schwarz technique). The rate of convergence
the eigenvalues is much improved and calculations for different valubls afe easier to
compare. It is possible to do inexpensive parameter studies using relatively small value
N_; larger values o, can then be used to further resolve any important, or interestin
results arising from such a parameter study.

Runs for moderate grid sizebl{ = 100— 400 andN, = 16 — 64) were performed on a
Silicon Graphics Workstation R5000; however, the larger parameter runs were perforr
on a SGI Power Challenge and a Fujitsu VPP300. We shall now discuss two model probl
arising in fluid dynamics which serve to demonstrate the utility of the algorithm describ
above.

3. RESULTS

We shall initially consider a model of the flow within a periodic array of jets above
plane boundary. The “basic flow” is taken to be a modified form of the asymptotic sucti
profile, namely

up(y) =1—e (1 +¢y),
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where the parameteris used to introduce an inflection point into the flogv=£ O corre-
sponds to the conventional asymptotic suction profile). Note that thesfjtnas an inflection
point aty = (2¢ — 1)/¢ (provided¢ > 1/2). Such inflectional flows will support growing
disturbances in the form of inviscid travelling waves. It was shown in [5] that spanwise |
riodic perturbations (@rtler vortices) will increase the instability of an inviscidly unstable
flow (in this case a boundary layer with an adverse pressure gradient). It is also possible
non-inflectional profiles to be modified by the spanwise perturbations to become invisci
unstable, such as those considered by Hall and Horseman [2] and Otto and Denier [6]
The total flow is taken to be

_ A »
Uy, 2 = () + 5 exp(—(y — Ye)?) (cosz + 1)up(y)

for the case of the periodic jet array, where the variabldenotes the centre of the “jets.”
The second flow of interest is taken to be

_ A
uy.2=y+> exp(—(y — Ye)?)(cosz + 1). 4

(In this case the Robin boundary condition must be modified in order that, in line with t
largey asymptotic behaviour of the solutions of (B~ ye™ asy — +00.)

In Fig. 1 we present a plot of the normal perturbation (real and imaginary part) for a va
of « =0.2; the corresponding eigenvalueds- 0.232+ 0.527 and was calculated using
Ny =100 andN, = 32. In Fig. 2 we present in part (a) a plot of the imaginary part of th
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FIG. 1. The normal component of the velocity perturbation for the case (real and imaginarypass),
¢ =1, anda =1/5, corresponding to=0.232+0.527 (N, =100, N, = 32).
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FIG. 2. The effect of a spanwise perturbation to an unbounded uniform shear, showing the imaginary |
of the pressure (a). The parameters usedvatel/5 andy, =0 with a vortex amplitude of 1.5, which yields
¢ = —.0209+0.01593 (N, = 400, N, = 32). The corresponding growth rate is shown in (b).
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eigenfunction, for a value ai = 0.2 with y. =0 and in part (b) a plot of the growth rate
aci versuse; the base flow is given by (4). Note here that the “smallness” of the growtt
rate is due to the fact that the instability is due entirely to the introduction of the inflectior
two-dimensional component to the basic shear flpwe y. Both flows are unstable and
the eigenvalues and corresponding eigenfunctions are readily computed. To produce
results in Fig. 2b (which represents 45 data points with a computational grid 400 by -
took 4900 s on a Silicon Graphics 02 (R5000).

4. CONCLUSIONS

We have described a method whereby eigenvalue problems governed by partial diffe
tial equations can be solved efficiently and cheaply (in terms of CPU). Here a normalisa
condition is imposed at an internal point and any boundary conditions are satisfied ex
itly. The resulting inhomogeneous system can then be inverted (efficiently in the case
the banded systems encountered in the example considered here) and iteration upc
eigenvalue carried out until the discretized equation is satisfied (to within some prescri
tolerance) at the normalisation point.

The utility of this technique is threefold. First, it provides an efficient (local) metho
whereby eigenvalue problems governed by partial differential equations can be solved.
normalisation procedure is a natural one which is easy to implement. Second, there i
restriction on the form of the partial differential equations which can be tackled using tl
technique. It can be as readily applied to the single equation discussed here asitcanto h
order systems such as those encountered in studies of viscous stability theory or more
plex flows, as in Otto and Streett [7], as well as to other forms of differential operators st
as the ballooning Schdinger equation arising in plasma physics [1]. Importantly, from th
standpoint of tackling “real world” problems the differential operators are not required to
separable and the domain of the resulting eigenfunction can be bounded, semi-infinite
unbounded (in one or more of the independent variables). In the case of unbounded dom
the only modifications that are required to the scheme result from the form of bound
conditions that act to close the system. Thus, for example, systems in which the domai
the “flow” u(y, z) is infinite in thez-direction (with perhaps compact supportzcan be
accommodated provided the correct form of decay boundary conditions are implemen
This technique can also be employed to solve eigenvalue problems which possess rel
able singularities at a boundary. Many such problems occur within fluid dynamics wt
considering the stability of flows best described by using a cylindrical polar coordine
system. The choice of normalisation away from the vicinity of the singularity, together wi
the ability to explicitly satisfy boundary conditions, makes this method particularly usef
in such cases.

Finally, it is worth emphasizing that the algorithm described above is equally suited
solving spatial eigenvalue problems governed by elliptic partial differential operators.
this case one fixes the real frequeayand iterates on the complex “wavenumbertintil
the convergence criteria is satisfied.
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